Some Experiments on Ensembles of Neural Networks for Hyperspectral Image Classification
نویسندگان
چکیده
A hyperspectral image is used in remote sensing to identify different type of coverts on the Earth surface. It is composed of pixels and each pixel consist of spectral bands of the electromagnetic reflected spectrum. Neural networks and ensemble techniques have been applied to remote sensing images with a low number of spectral bands per pixel (less than 20). In this paper we apply different ensemble methods of Multilayer Feedforward networks to images of 224 spectral bands per pixel, where the classification problem is clearly different. We conclude that in general there is an improvement by the use of an ensemble. For databases with low number of classes and pixels the improvement is lower and similar for all ensemble methods. However, for databases with a high number of classes and pixels the improvement depends strongly on the ensemble method. We also present results of classification of support vector machines (SVM) and see that a neural network is a useful alternative to SVM.
منابع مشابه
Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملHyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features
Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...
متن کاملImprovement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra
Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...
متن کاملWavelet Networks for Hyperspectral Images Classification
The idea of using artificial neural network has proved useful for hyperspectral image classification. However, the high dimensionality of hyperspectral images usually leads to the failure of constructing an effective neural network classifier. To improve the performance of neural network classifier, wavelet-based feature extraction algorithms are applied to extract useful features for hyperspec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004